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Failure to follow proper concurrency management protocols can produce serious vulnerabilities.
Concurrent access to shared resources without using appropriate concurrency management mechanisms
produces hard-to-find vulnerabilities. Many "functions" that are necessary to use can introduce "time of
check/time of use" vulnerabilities.

Description

When multiple threads of control attempt to share the same resource but to not follow the appropriate
concurrency protection protocol, then any of the following are possible:

• Deadlock: one or more thread may become permanently blocked [Johansson 053].

• Loss of information: saved information is overwritten by another thread [Gong 034, Pugh 995,
Manson 016, Manson 057].

• Loss of integrity of information: information written by multiple threads may be arbitrarily
interlaced [Gong 038, Pugh 999, Manson 0110, Manson 0511].

• Loss of liveness: imbalance in access to shared resources by competing threads can cause
performance problems [Gong 0312, Pugh 9913, Manson 0114, Manson 0515].

Any of these can have security implications, sometimes manifest in apparent logic errors (decisions
made based on corrupt data).

Competing "Systems" (Time of Check/Time of Use)
This is the most frequently encountered subclass of concurrency-related vulnerabilities. Many of the
defects that produce these vulnerabilities are unavoidable due to limitations of the execution
environment (i.e., the absence of proper concurrency control mechanisms). A common mitigation tactic
is to minimize the time interval between check and use, but a more effective tactic is use a "check, use,
check" pattern that can often detect concurrency violations, though not prevent them.

Applicable Context

All of the following must be true:

• Multiple "systems" must be operating concurrently.

• At least two of those systems must use a shared resource (e.g., file, device, database table row).

• At least one of those systems must use the shared resource in any of the following ways:

• Without using any concurrency control mechanism. This includes the situation where no such
mechanism exists, such a conventional UNIX filesystems, causing corruption or confusion.
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• Using the right concurrency control mechanism incorrectly. This includes situations like not
using a consistent resource locking order across all systems (e.g., in databases), causing
deadlocks.

• Using the wrong concurrency control mechanism (even if it used correctly). This includes
situations where a give resource may support multiple concurrency control mechanisms that are
independent of one another (e.g., UNIX lockf() and flock()), causing corruption or confusion.

These defects are frequently referred to as time of check/time of use defects because APIs providing
access to the resource neither provide any concurrency control operations nor perform any implicit
concurrency control. In this case, a particular condition (e.g., availability of resource, resource attributes)
is checked at one point in time and later program actions are based on the result of that check, but the
condition could change at any time since no concurrency control mechanism guarantees the condition
did not change.

Competing Threads within a "System" (Races)
The second largest class of concurrency-related vulnerabilities is generated by defects in the sharing of
resources such as memory, devices, or files. The defect may be a design error associated with the
concurrency control mechanisms or with an implementation error such as not correctly using those
mechanisms. Caching errors can be considered a member of this class.

Strictly speaking, signal handling defects are not concurrency defects. Signal handlers are invoked
preemptively in the main thread of the process. Therefore, signal handlers are not really concurrently
executed. However, from the programmer's viewpoint, they mostly feel like concurrent execution, so we
classify them here, at least for now.

Applicable Context

All of the following must be true:

• A "system" must have multiple concurrently operating threads of control.

• Two or more of those threads must use a shared data object, device, or other resource.

• At least one thread must use the shared resource without using the appropriate concurrency control
mechanism correctly (or at all).

Impacts Being Mitigated
• Impact #1:

• Minimally: None.

• Maximally: Deadlock: one or more threads may become permanently blocked.

• Impact #2:

• Minimally: None.

• Maximally: Loss of information: saved information is overwritten by another thread.

• Impact #3:

• Minimally: None.

• Maximally: Loss of integrity of information: information written by multiple threads may be
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arbitrarily interlaced.

• Impact #4:

• Minimally: None.

• Maximally: Loss of liveness: imbalance in access to shared resources by competing threads can
cause performance problems.

Security Policies to be Preserved
• Policy #1

• Threads must not deadlock.

• Policy #2

• Information must not be lost.

• Policy #3

• Information must not be corrupted.

• Policy #4

• Acceptable performance must be maintained.

How to Recognize this Defect
• Concurrency defects are extremely difficult to recognize. There is no general purpose approach to

finding them.

Mitigation Advice

To Engineers:
• Efficacy: INFINITE

• The appropriate concurrency control mechanism must be used in the conventional way (assuming
there is one).

To Engineers:
• Efficacy: LOW

• Where no concurrency control mechanism is available, seek to minimize the interval between the
time of check and the time of use. Technically this does not correct the problem, but it can make the
error much more difficult to exploit.
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